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Abstract-A theoretical analysis is presented which examines the dynamic response of a rigid­
perfectly plastic clamped beam struck transversely by a mass at any point on the span. The analysis
employs an interaction yield surface which combines the bending moment, membrane force and
transverse shear force required for plastic flow. Material strain rate sensitive effects are examined
with the aid of the Cowper-Symonds equation. Good agreement is obtained between the theoretical
predictions for the maximum permanent transverse displacements and the corresponding exper­
imental results. An energy density failure criterion is used to predict the dynamic inelastic failure
of this impact problem.

NOMENCLATURE

q
1
1,,12

1r
Ii
A r
A o

B
D
E1

E~

E~

G
G*
H
L
M
MB,Mc
M do

MhMr

M*
N
Ndo

N*
Q
QB,Qc
Qdo

QhQ,
Q*
S
S*
Vo

W
WA

WB,Wc
w"W,
Wr
W*

OC

f3
y
<5

material constant in eqn (51)
time
times at the ends of phases 1 and 2, respectively
time when motion ceases
axial velocity at the impact point of a beam
smallest final cross-sectional area of a tensile specimen
original cross-sectional area of a tensile specimen
beam breadth
material constant in eqn (51)
plastic work dissipated in a plastic hinge at the left-hand side of the impact point
E,/Mdo

dimensionless plastic shear work dissipated in a plastic hinge at the left-hand side of the impact
point
mass of a striker
G/(2pBHL)
beam thickness
half length of a beam
bending moment
bending moments at the supports Band C, respectively
dynamic fully plastic bending moment
bending moments at the left- and right-hand sides of the impact point, respectively
M/Mdo

membrane force
dynamic fully plastic membrane force
N/Ndo

transverse shear force
transverse shear forces at the supports Band C, respectively
dynamic fully plastic transverse shear force
transverse shear forces at the left- and right-hand sides of the impact point, respectively
Q/Qdo
location of the impact point from the left-hand support
S/L
initial velocity of a striker
transverse displacements at the left- and right-hand sides of the impact point during phase I
transverse displacement at the impact point
transverse displacements at the supports Band C, respectively
tran~verse displacements at the left- and right-hand sides of the impact point, respectively
maximum permanent transverse displacement
WjH
length of a plastic hinge/H
E~/E~

udo/(2pL2)
J3H/(2L)
critical strain
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rupture strain
maximum value of c,
mean strain rate
angular velocity of the left-hand part of a beam
GV;L/(2BH'uo )

r/o
location of a travelling plastic hinge
initial location of a travelling plastic hinge
¢/L
density of material
dynamic stress-strain curve in a uniaxial tensile test
dynamic yield stress
static yield stress in a uniaxial tensile specimen
increment of axial elongation of a beam at the left- and right-hand sides of the impact point
during phase I
increments of axial elongations of a beam at the supports Band C and at the location D.
respectively
increments of axial elongations of a beam at the left- and right-hand sides of the impact point,
respectively
A/L
increment of plastic work for a time step !'ll
!'lEt/Mdo

dimensionless increment of plastic shear work for a time step !'ll
time step
density of plastic work dissipated at a plastic hinge in a beam
Q/udo

dimensionless critical density of plastic work
o( )/01
D'( )/iJI'.

1. INTRODUCTION

The dynamic plastic response of a fully clamped beam struck transversely by a mass at the
centre or at any point on the span has been examined by several authors. Parkes (1958)
studied the beam impact problem and developed a theoretical rigid, perfectly plastic analysis
with travelling plastic bending hinges. However, this analysis was derived for infinitesimal
displacements and, therefore, did not retain the influence of membrane forces in the
yield condition, which would be important for transverse deflections larger than the beam
thickness, approximately. Transverse shear forces were also neglected, but they would
be important when the impact position is close to a support. Parkes' model was extended
further by Nonaka (1967) who considered the influence of membrane forces on the behav­
iour ofbeams subjected to impacts at the mid-span which caused finite transverse deflections.
A parabolic bending moment-membrane force yield curve is employed by Nonaka (1967),
which is a unique yield curve in the M-N plane for a beam with a rectangular cross-section
made from a perfectly plastic material (Shen and Jones, 1991a). It is shown by Shen and
Jones (1991b) that the static admissibility of the extended Parkes' model in Nonaka (1967)
is only violated slightly when the beam is struck by a heavy mass travelling at a low speed.
The influence of the rotatory inertia and the transverse shear force on the response of a
beam impacted at the mid-span is examined in Jones and de Oliveira (1979) and de Oliveira
(1982) when plastic flow is controlled by a square M-Q yield condition. It is concluded in
these two papers that rotatory inertia does not have a significant effect on the response but
that the transverse shear force has a much more important influence. The dynamic response
of a beam with a non-central impact is examined by Liu and Jones (1988) when plastic flow
of the material is controlled by either M-N or M-Q square yield curves. No strain rate
sensitivity is considered in any of the above analyses, except a simple estimate is made by
Liu and Jones (1987).

It is evident from the experimental work by Liu and Jones (1987) and Yu and Jones
(1991) that membrane forces dominate the behaviour of the beams with impacts near to the
mid-span which produce transverse deflections larger than about one beam thickness.
However, the membrane forces still play an important role when the impact point is close
to a support, although the transverse shear forces contribute significantly to the response in
this case, as shown in figures 26(a) and 27(a) in Liu and Jones (1987). Thus, an interaction
yield surface, which was suggested by Shen and Jones (1991a) and Sobotka (1955) and
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Fig. 1. A fully clamped beam struck transversely by a mass at a distance S from the left-hand
support.
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which combines the influences of the bending moment, axial tensile force and the transverse
shear force, is necessary for predicting the response of this dynamic problem, as noted in
Shen and Jones (1992) for a beam subjected to a uniformly distributed impulsive load.

The average strain rate obtained in this study for the beams tested by Liu and Jones
(1987) and Yu and Jones (1991) is about 40 S-I. Thus, the flow stress of the strain rate
sensitive mild steel beams will be enhanced significantly, while the yield stress of the alu­
minium alloy beams will be less affected. The influence of material strain rate sensitivity is
taken into account in this study with the aid of the Cowper-Symonds constitutive relation
(Symonds, 1965; Jones, 1989a).

A theoretical analysis for the dynamic plastic response of a rigid-plastic clamped beam
struck by a mass at any point on the span is presented in the next section. This analysis
caters for the influence of finite transverse displacements and assumes that plastic yielding
is controlled by the simultaneous influence of the bending moment, membrane force and
the transverse shear force together with the strengthening influence of material strain rate
sensitivity. The numerical predictions together with previously published experimental
results are compared in Section 3. The failure of some of the specimens is examined in
Section 4 with an energy density failure criterion, which was introduced earlier by the
authors for beams loaded impulsively.

2. DYNAMIC RESPONSE OF A CLAMPED BEAM UNDER IMPACT LOADING

The fully clamped beam in Fig. 1 has a length 2L, width B, thickness H and a mass
density p, and is struck by a mass G travelling with an initial velocity Vo at a point A which
is a distance S (S < L) from the left-hand support. After impact, the striker G is assumed
to remain in contact with the beam. TherefOre, the striker and the struck point of the beam
have an initial velocity Vo at the instant of contact and a common velocity throughout the
entire response. t

The plastic yielding of the beam in Fig. 1is controlled by an interaction yield condition
which is expressed in terms of the bending moment M, axial tensile force N and the
transverse shear force Q in the form (Sobotka, 1955)

(1)

as shown in Fig. 2, where M* = M/Mdo , Q* = Q/Qdo and N* = N/Ndo ' N is assumed to
remain constant along the length of a beam since the influence of axial inertia is small
enough to be neglected. The quantities M do = (fdoBH2/4, Qdo = (fdoBH/,J3 and Ndo =
(fdoBH are the fully plastic bending moment, transverse shear force and membrane force,
respectively, for a beam which is made from a rigid, perfectly plastic strain rate sensitive
material with a dynamic flow stress (fdo' Equation (1) is shown to be statically admissible
by Shen and Jones (1991a).

t Most of the initial kinetic energy of a striker is dissipated by plastic deformations in a beam, particularly
when the mass of a striker is much larger than the beam mass. However, some rebounding of a striker was
ob~rved in all of the experimental tests reported by Liu and Jones (1987) and Yu and Jones (1991), except those
whIch ruptured.
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Fig. 2. An interaction yield surface (Shen and Jones, 1991a; Sobotka, 1955).

There are three phases of motion during the entire response for the asymmetric impact
problem in Fig. I. The response durations for the first and second phases of motion with
both travelling and stationary plastic hinges are short when the mass ratio (G*) is large.
In this case, most of the transverse deflection is accumulated and the plastic work is
dissipated during the third phase of motion which has only stationary plastic hinges.

2.1. Phase I: 0 ~ t < t I

It is assumed that a stationary plastic hinge develops at the impact point together with
two travelling hinges which form at the two points ~ = ~o (~o i= 0) and move symmetrically
with respect to the impact point towards the supports, as shown in Fig. 3(a).

The yield curve for the fully clamped support B is

(2)

which corresponds to the Q* = 0 plane in Fig. 2.
The transverse equilibrium equations for the impact point and the region AB, together

with the moment equilibrium equation for the region AB, are

(

(0)

(0)

GioiA

i
o
i i
Q Q

(e)

Fig. 3. Phase I. (a) Velocity profile. (b) Generalized forces and moments. (c) Dynamic forces on
striker.



Dynamic response of clamped beams

GWi/+2Q =0,

d
dt (pBHeW/2) =Q

and

d 2 •
d/pBHe W/6) = MB+M+NW,

respectively. Equations (3)-(5) are rewritten in the fonn

G*W~ = -vQ*,

and
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(3)

(4)

(5)

(3)'

(4)'

(5)'

where G* = G/(2pBHL), I' = (1do/(2pL 2
), 0 = ../3H/(2L), v = 1'/0. e* = ~/L and w* =

WIH.
The normality requirement of plasticity for the transverse velocity profile in Fig. 3(a)

and the yield condition in Fig. 2 demands that

and

Wi/-W dM
wg = - dQ'

A dM
Wle= - dN

(6)

(7)

(8)

where A and AD are the increments of the axial elongation at the left-hand side of point A
and the right-hand side of point D in Fig. 3(a), respectively. With eqns (1) and (2), eqns
(6)-(8) yield

and

A~,* _ 1>:2N*
W* - 3V ,

respectively, where A* = AIL. By means of the approximate geometric relation

(6)'

(7)'

(8)'

(9)
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Fig. 4. Phase 2. (a) Velocity profile. (b) Generalized forces and moments. (c) Dynamic forces on
striker.

(9)'

eqns (7)'-(9)' give

(lo)t

The complete solution at any time during the first phase of motion may be obtained
by solving eqns (1)-(2), (3)'-(6)' and (10) by means of the well-known Runge-Kutta
method with the initial conditions:

N*=O, M*=O, Q*=I, M~=1 and ~(»O

at t = 0. A time step of 10-- 8 S is used in the calculations. Phase 1ends at t = t I when ~ = S
and the values of the variables at t = t I are the initial conditions for the next phase of
motion. If ~o > S, then no phase 1 occurs and different initial conditions are required for
phase 2, as discussed later.

2.2. Phase 2: t I ~ t < t 2

The left-hand travelling plastic hinge reaches the support Bat t = t l where it remains
throughout this phase of motion. However, the right-hand travelling hinge continues to
move towards the support C, as shown in Fig. 4, where u is the axial displacement of the
impact point A.

The yield conditions for the points B, C and the left- and right-hand sides of point A
in Fig. 4 are

(11)

(12)

(13)

t Equation (10) with Q* = 0 gives W* = N* which predicts that W* = I when N* = I, as noted by Jones
(l989a) for a static concentrated load acting at the mid-span of a fully clamped beam.
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(14)

respectively.
The transverse equilibrium equations for the impact point and for the segments AB

and AD' are

and

d .
dt [pBHe Wr /2] = Q"

respectively. The moment equilibrium equations for the regions AB and AD' are

(15)

(16)

(17)

and

(19)

respectively. The approximations S +u ~ Sand e- u ~ eare used in deriving eqns (16)­
(19) since u is small compared with Sand e. Equations (15)-(19) give

WJ = [-2vS*(Qt+2QJ)+3y(MJ+Mn+ 12yN*(W)*- WJ)]/S*2, (20)

wt = [2vS*(2Qt+QJ)-3y(MJ+Mt)-12yN*(Wt- WJ)]fS*2, (21)

and

(23)

respectively, where S* = SIL.
The normality principle of plasticity associated with the yield conditions (11)-(14) and

Fig. 2 requires that

WB dMB

(Wi - WB)/S = - dQB '

AB dMB

(Wi- WB)IS ~ - dN'

wA-Wi dM)
(W)- Wa)IS = - dQI '

AI dM,
(Wi- Wa)IS= - dN'

(24)

(25)

(26)

(27)
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dMr

dQr'
(28)

and

Ar dMr

Wr/~ = dN
(29)

Ac
WJ[=

dMc
dN ' (30)

where An, AI' Ar and Ac are defined similarly to A in Section 2.1.
Geometric compatibility provides the approximate expressions

and

(31 )

(32)

Using the yield conditions expressed by eqns (11)-(14), eqns (24)-(32) are recast into the
form

(24)'

(26)'

(28)'

(33)

and

(34)

where u* = ulH.
Equations (II)~(14), (15)', (20)-(23), (24)', (26)', (28)' and (33)-(34) are solved using

the Runge-Kutta method with the time step of 1O~ 8 s to provide

during this phase of motion which ends at t = t 2 when ~ = 2L-8.
If ~o > 8, then no phase 1 occurs, as mentioned in Section 2.1, and the beam motion

commences at phase 2 with the following initial conditions:

WI = 0, WI = 0, Wr = 0, Wr = 0, WA = 0, WA = Yo, WB = 0, Wn = 0,

N* = 0, QI* = 1, Mt = 0, Q: = 1, M: = 0, Q~ > 0, M~ < I, M~ = 1

and (0 > 8 at t = 0.

The initial values of Q~ and M~ are determined from
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fJ Q~ 3yJl-Q;2-2PS*(1+2Q~)
- - =0
S* Jl-Q;2 3PS*(1 +Q~)-3yJl-Q;2
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(35)

(36)

which are derived from eqns (20)-(21) and (24)', and N* = 0 at t = O.
Phase 2 ends at t = t 2 when the right-hand travelling plastic hinge reaches the support

C. The values of the variables at t = t 2 are the initial conditions for the next phase of
motion.

2.3. Phase 3: t 2 ~ t ~ tr
After the right-hand travelling hinge reaches the support C, the beam continues to

deform with the transverse velocity profile shown in Fig. 5.
The yield condition for point Cis

(37)

It is evident that eqns (15)' and (20)-(21) can be used in this phase of motion, and
that w~ and W: are the same as W~ and wt, respectively, except for S* being replaced
by 2- S* and changing the subscripts 1and B into rand C, respectively. Thus

w~ = [-2v(2-S*)(Q;"'+2Q~) +3y(M~+M:)+ l2yN*(Wr* - W~)]/(2-S*)2 (38)

and

w: = [2v(2-S*)(2Q:+Q~)-3y(M~+Mn-12yN*(W:- W~)]/(2-S*)2. (39)

Similarly, eqns (24)', (26)' and (33) are required for normality during this phase of
motion and give

W*(2-S*)
.c . ~ IfJQ*{2-M*/Jl-Q*2)/Jl-Q*2 (40)W: _ W~ - 2 C C C C ,

(W*- W*)(2-S*)
A. r. ~ IfJQ*{2-M*/Jl-Q*2)/JI-Q*2 (41)(W: _ W~) - 2 r r r r ,

.I-.Jl~-J.Bt-- 'ii. W W ~ (
I r A

A

Fig. 5. Phase 3. (a) Velocity profile. (b) Generalized forces and moments. (c) Dynamic forces on
striker.
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This phase of motion ends when the motion of a beam ceases at { = {f.

2.4. Dissipation ofplastic work
Attention is focused only on the largest dissipation of plastic work Et which occurs at

the left-hand side of the impact point. The increment of total plastic work /).E1 for every
time step /).t is

(43)

where l1t is the angular velocity associated with M], i.e.

for phase I

and

l1t = (Wt - WB)/S, for phases 2 and 3.

The dimensionless form of eqn (43) is

while the dissipation of plastic shear work at the left-hand side of the impact point is

(44)

Thus

and

E~ = :E /)'E~.

Now, the ratio

was introduced by Shen and Jones (1992) so that the empirical formula

0( + 1.2fJ = 1.3,

(45)

(46)

(47)

(48)

which was used to relate the length of a plastic hinge O(H to the parameter fJ for impulsively
loaded beams may be used for the current impact problem.

The total plastic energy density at a plastic hinge is taken as

the dimensionless form of which is
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Fig. 6. Variation of the dimensionless displacement Wc· with A. for mild steel beams with p = 7860
kg m-3, L = 50.8 mm, B = IO.l6 mm and (10 = 337 N mm- 2 for the H = 3.81 and 5.08 mm
specimens and (10 = 302 N mm- 2 for the H = 6.35 and 7.62 mm specimens in Liu and Jones (1987)
and (10 = 264 N mm- 2 for the H = 6.24 mm specimens in Yu and Jones (1991) struck by a mass of
5 kg. • Experimental results from Liu and Jones (1987). a Experimental results from Yu and Jones
(1991). Present theoretical predictions with D = 4Os- 1andq = 5.-----Nonaka
(1967) for a strain rate insensitive material. --'--Theoretical predictions from Liu and Jones
(1988) for a strain rate insensitive material; (a)-upper bound, (b)-lower bound. --' '-­
Modified Nonaka's curve with D = 40 S-I and q = 5. (a) S· = 1.0. (b) S· = 0.75. (c) S· = 0.5.

(d) S· = 0.25. (e) S· = 0.125.
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Fig. 7. Variation of the dimensionless displacement W,* with j, for aluminium alloy beams with
p = 2700 kg m-3, L = 50.8 mm, B = 10.16 mm and (10 = 354.5 N mm- 2 for the H = 3.81,5.08 and
6.35 mm specimens and (10 = 412 N mm- 2 for the H = 7.62 mm specimens in Liu and Jones (1987)
and (10 = 207.5 N mm- 2 for the H = 6.39 mm specimens in Yu and Jones (1991) struck by a mass
of 5 kg. * Experimental results from Liu and Jones (1987). 0 Experimental results from Yu and
Jones (1991). Present theoretical predictions with D = 6500 S-I and q = 4. - - -- - - - -­
Present theoretical predictions but neglecting strain rate effect. ----- Nonaka (1967) for
a strain rate insensitive material. --'-- Theoretical predictions from Liu and Jones (1988) for a
strain rate insensitive material; a-upper bound, b--Iower bound. --' .--Modified Nonaka's
curve with D = 6500 S-I and q = 4. (a) S* = 1.0. (b) S* = 0.75. (c) S* = 0.5. (d) s* = 0.25.

(e) s* = 0.125.
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Thus, the dimensionless critical energy density is
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(49)

(50)

where €c is a value of a strain which is to be determined when considering various factors
in an actual structural problem.

The dynamic flow stress for a rigid, perfectly plastic material is taken in the form

[a)

~I==:::::!:::t==

(bl

tl==

Fig. 8. Variation of the generalized stresses at the left-hand side of the impact point during the
response of a fully clamped beam with p = 7860 kg m-~, L 50.8 mm, B = 10.16 mm, H = 3.81
mm in Liu and Jones (1987) struck by a mass of 5 kg travelling at an initial speed of 2.67 m S-l.

(a) S'" = 0.75. (b) S'" = 0.25. (e) S* = 0.125. (d) S'" = 0.1.

$AS 30112.F
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(c)

tl'=====
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/

Fig. 8. Continued.

(51)

according to the Cowper-Symonds constitutive equation (Symonds, 1965), where (Jo is the
initial flow stress in a static uniaxial tensile test and D and q are material constants which
are determined from dynamic tensile tests on the material. The values of D and q for several
materials are listed by Jones (l989a). The term 8m in eqn (51) is the mean uniaxial strain
rate which is estimated from

(52)

and is obtained using an iterative procedure which is terminated when the difference between
the dynamic flow stress in eqn (51) is less than I%. The maximum value of 8c is obtained
from the expression
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10

Fig. 9. Variation of 6Wf* with A for the aluminium alloy beams in Yu and Jones (1991) with
(10 207.5 N mm- 2, H = 6.39 mm and S* = 1.0 and S* 0.125. Present theoretical

predictions with D = 6500 s- I and q = 4. 0 Experimental results from Yu and Jones (1991).

(53)

where O'd (8, em) is the dynamic engineering stress-strain curve which is obtained from a
dynamic uniaxial tensile test for a given strain rate em and 8f is the engineering rupture strain
for a zero gauge length which is calculated from 8f = Ao!Af - 1, where Ao and Af are the
original and the smallest final cross-sectional areas of a tensile specimen, respectively. It is
evident that Q* may be interpreted as the average strain in the most severely deformed
plastic region of a beam.

3. RESULTS AND DISCUSSION

Figures 6 and 7, respectively, show the present theoretical predictions for the dimen­
sionless final permanent transverse deflection Wr* at the impact point versus the dimen­
sionless initial kinetic energy parameter A. = GV;L/(2BH30'0) for mild steel and aluminium
alloy beams struck at five different positions. The strain rate sensitive behaviour of the mild
steel beams is characterized by eqns (51) and (52) with D = 40 S-I and q = 5 from Symonds
(1965). Two sets of results are presented for the aluminium alloy beams. One set of curves
is calculated for a strain rate insensitive material, while the other set uses eqns (51) and
(52) with D = 6500 S-I and q = 4 from Symonds (1965). For comparison purposes, the
theoretical predictions of Nonaka (1967) are also shown in Figs 6(a) and 7(a), in which an
exact parabolic M-N yield condition is used but the influence of strain rate sensitivity is
disregarded. The authors of this paper have modified Nonaka's curves by replacing 0'0 by
0'do which is calculated from eqn (51) using the values of em estimated according to eqn (52).
The theoretical predictions derived in Liu and Jones (1988) using square M-N yield curves,
which inscribe and circumscribe the parabolic yield curve, and without retaining the influ­
ence of material strain rate sensitivity, are also drawn in Figs 6(a)-(e) and 7(a)-(e).

Surprisingly good agreement is observed at the five impact positions in Figs 6 and 7
between the present theoretical predictions and the experimental results for the mild steel
and aluminium alloy specimens reported by Liu and Jones (1987) and Yu and Jones (1991).
This agreement is achieved because the influences offinite deflections (i.e. membrane forces)
and material strain rate sensitivity (which is especially important for mild steel) and the
effect of the transverse shear force on yielding (which is particularly important when the
impact point is close to the supports) are retained in the present study.
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Fig, 10. Comparison between the present theoretical predictions with several values of 8, for failure
and the experimental results for the aluminium alloy beams in Liu and Jones (1987) and Yu and
Jones (1991 ),.-----.-- Present theoretical predictions with D = 6500 s- I and q = 4,
Present theoretical predictions for a strain rate insensitive material. • Ruptured, No failure, (a)
H = 3.81 mm in Liu and Jones (1987). (b) H = 5,08 mm in Liu and Jones (1987). (c) H = 6.39 mm

in Yu and Jones (1991).

The comparisons made in Fig, 6 reveal that the material strain rate sensitive properties
must be considered for the mild steel specimens even for the low speed impacts. However.
the comparisons between the present theoretical predictions in Fig. 7 with
and without (---- .--._- -) strain rate effects show that the influence of material strain
rate sensitivity for the relatively strain rate insensitive aluminium alloy beams subjected to
low speed impacts is not negligible although there is some doubt about the strain rate
sensitive properties of some aluminium alloys (Jones, 1974). However, it has been noted in
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Jones (1989b) that the strain rate sensitivity of some materials is greatest for small strains
near the yield stress and is less significant for large plastic strains. A modified form of the
Cowper-Symonds equation, which incorporates this phenomenon, is presented by Jones
(1989b). Equation (51) does not cater for the variation of the material strain rate sensitivity
with strain which could be particularly significant when estimating the rupture of beams.
An equation which recognized this phenomenon was presented by Jones (1989b, c) but it
has not been used in the present calculations because eqns (51) and (52) give a constant
dynamic flow stress based on an average strain rate throughout the entire duration of a test
which is a good approximation of the dynamic uniaxial tensile data.

Figures 8(a)-(d) show the variation of the transverse shear forces on the left-hand side
of the impact point A for different locations of the striker on a beam span. The generalized
stresses on the left-hand side of the impact point change from point A at initial impact
along the dotted curves on the yield surface given byeqn (1) to point A' when motion ceases,
as shown in Fig. 8. It transpires that the transverse shear force exercises a more important
influence on plastic yielding when the impact point is located close to the supports. The
small differences between the modified Nonaka's curves, which incorporated the influence
of material strain rate sensitivity according to eqns (51) and (52) but neglected transverse
shear effects, and the present theoretical predictions in Figs 6(a) and 7(a), which included
both effects, indicate that the influence of the transverse shear force is not very important
for impacts at the mid-span. However, it is observed that the differences between the mean
values of the theoretical curves labelled "a" and "b" for the inscribing and circumscribing
yield criteria (Liu and Jones, 1988), and the present theoretical predictions, decrease from
Figs 6(a) to (e) and from Figs 7(a) to (e). This trend suggests, possibly, that the influence
of the transverse shear force is more important for impact positions close to the supports.
Figure 9 shows the variation of the dimensionless transverse shear displacements
L\ Wr* = W~ - W1* when l = If with Afor the aluminium alloy beams which were tested by
Yu and Jones (1991). A comparison between the two cases ofS* = I and s* = 0.125 shows
a strong influence of the transverse shear effects when the impact point is close to a support.

4. FAILURE PREDICTION

It is suggested by Shen and Jones (1992) that an energy density failure criterion may
be used to predict the dynamic inelastic failure (rupture) of a structural component when
n* ~ n~ = Be according to eqn (50) here.

A rupture strain of magnitude Bf = 0.5t is selected as Be by Shen and Jones (1992) in
order to predict the dynamic inelastic failure of impulsively loaded aluminium alloy 6061
T6 beams having a breadth of 25.4 mm and thicknesses of 4.75-9.53 mm. However, the
appropriate value of Be might be much lower than the value of Bf for the beams examined
by Liu and Jones (1987) and Yu and Jones (1991), since a local impact loading may induce
local deformations which reduce the strength of the beam. Moreover, the rupture strain of
materials may change with strain rate, as discussed further by Jones (1989b,c).

The experimental results for the failure of the aluminium alloy beams, which were
reported by Liu and Jones (1987) and Yu and Jones (1991) for thicknesses of 3.81, 5.08
and 6.39 mm, are shown in Figs lO(a)-(c), respectively. Theoretical curves from the present
study are also presented in Figs lO(a)-(c) for the threshold values of the initial velocities
that would cause rupture of the beams for different values of Be, where the strain rate effects
are examined at the different velocities using D = 6500 S-I and q = 4. The comparisons in
Figs lO(a) and lO(b) reveal that the theoretical predictions with Be between 0.08 and 0.12

t An engineering rupture strain of 0.66 (average of 0.529 and 0.785) is reported by Yu and Jones (1991) for
an aluminium alloy material at a strain rate of 140 S-I and having a nominal static (Ii = 0.0012 S-I) rupture strain
of 0.176 (average of 0.160, 0.188 and 0.181). Thus, the engineering rupture strain at a high strain rate is estimated
in Shen and Jones (1992) as Be = 0.66 x 0.135/0.176 = 0.50 for the aluminium alloy 6061 T6 having a nominal
static rupture strain of 0.135. This estimate is made in the absence of an experimental value and is approximate
because the engineering rupture strain of many materials is a non-linear function of strain rate, as remarked by
Jones (1989b).
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would bound the experimental results for the dynamic inelastic failure of the aluminium
alloy beams in Liu and Jones (1987).

It appears that the value of 8e to be used in eqn (50) for the dynamic inelastic failure
of structures is related strongly to the actual geometric characteristics of a structural
member, as well as the material properties.

5. CONCLUSIONS

A theoretical rigid-plastic analysis is presented in this article for a fully clamped beam
struck transversely by a mass at any position on the span. The important influences of
material strain rate sensitivity and finite deflections, as well as the effect of the transverse
shear force on plastic yielding, are investigated. Good agreement is obtained between the
present theoretical predictions for the maximum permanent transverse displacements and
the previously published experimental results on both mild steel and aluminium alloy beams
in Liu and Jones (1987) and Yu and Jones (1991). An energy density failure criterion, which
was developed by Shen and Jones (1992), is examined for this particular problem which
leads to some useful observations on the choice of the critical strain 8e •
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